Quantum Search Architecture
Revolutionary indexing and search system inspired by quantum computing principles, delivering unprecedented performance for enterprise-scale workspaces.
Status: Beta - Available in v1.3, full rollout in v1.4
What is Quantum Architecture?
Lokus Quantum is not actual quantum computing, but a revolutionary indexing and search system inspired by quantum computing principles:
Note: Quantum-Inspired Principles:
- Superposition Index: Multiple index states exist simultaneously
- Entanglement Linking: Related data automatically cross-references
- Probabilistic Querying: Results ranked by quantum-like probability waves
- Interference Patterns: Search patterns interfere constructively/destructively
- Quantum Annealing: Index optimization through simulated annealing
Why “Quantum”?
The architecture borrows conceptual frameworks from quantum mechanics:
- Superposition - Multiple index structures coexist, each optimized for different query types
- Entanglement - Related documents are linked across multiple dimensions
- Interference - Search terms create wave patterns that amplify relevant results
- Collapse - Query execution “collapses” the index to specific results
- Annealing - Continuous optimization finds global performance maxima
Architecture Components
1. Quantum Superposition Index (QSI)
The QSI maintains multiple overlapping index structures simultaneously:
interface QuantumSuperpositionIndex {
// Primary hash-based index - O(1) lookups
hashIndex: Map<string, QuantumState>
// Semantic embedding index - similarity search
embeddingIndex: VectorIndex<768> // 768-dim embeddings
// Temporal index - time-based queries
temporalIndex: TimeSeriesIndex
// Property index - structured data
propertyIndex: TrieIndex<PropertyValue>
// Graph index - relationship queries
graphIndex: AdjacencyMatrix
}
interface QuantumState {
fileId: string
waveFunction: Float32Array // Probability distribution
phase: number // Query relevance phase
entanglements: Set<string> // Related entities
lastCollapse: timestamp // Last accessed
}How it Works
1. Indexing Phase: When a file is indexed, it’s represented as a quantum state with multiple “superposed” representations:
async function indexFile(file: File): Promise<QuantumState> {
const state = {
fileId: file.id,
waveFunction: new Float32Array(768),
phase: 0,
entanglements: new Set(),
lastCollapse: Date.now()
};
// Compute embeddings for semantic search
state.waveFunction = await computeEmbedding(file.content);
// Find entanglements (related files)
state.entanglements = await findRelatedFiles(file);
// Update all index structures
qsi.hashIndex.set(file.id, state);
qsi.embeddingIndex.insert(state.waveFunction, file.id);
qsi.temporalIndex.insert(file.modified, file.id);
qsi.propertyIndex.insert(file.properties, file.id);
return state;
}2. Query Phase: Searches create interference patterns across all index structures:
async function quantumSearch(query: string): Promise<SearchResult[]> {
// Create query wave function
const queryWave = await computeEmbedding(query);
// Generate interference patterns across indices
const hashResults = qsi.hashIndex.get(query);
const embeddingResults = qsi.embeddingIndex.search(queryWave, 100);
const temporalResults = qsi.temporalIndex.getRecent(100);
// Constructive/destructive interference
const interference = computeInterference([
hashResults,
embeddingResults,
temporalResults
]);
return interference;
}3. Collapse Phase: Results “collapse” to the most relevant matches based on constructive interference:
function computeInterference(results: SearchResult[][]): SearchResult[] {
const scoreMap = new Map<string, number>();
// Combine scores with wave interference
for (const resultSet of results) {
for (const result of resultSet) {
const currentScore = scoreMap.get(result.id) || 0;
const waveAmplitude = Math.cos(result.phase) * result.probability;
scoreMap.set(result.id, currentScore + waveAmplitude);
}
}
// Sort by interference amplitude
return Array.from(scoreMap.entries())
.map(([id, score]) => ({ id, score }))
.sort((a, b) => b.score - a.score);
}4. Caching: Collapsed states are cached for instant re-access:
class CollapseCache {
private cache = new LRUCache<string, SearchResult[]>(1000);
collapse(query: string, results: SearchResult[]): void {
this.cache.set(query, results);
}
retrieve(query: string): SearchResult[] | null {
return this.cache.get(query);
}
}2. Neural Semantic Cache
AI-powered predictive caching system that learns user behavior:
class NeuralSemanticCache {
private model: TransformerModel // Lightweight BERT-like model
private cache: LRUCache<string, CachedResult>
private accessPatterns: AccessPattern[]
async predictNextQuery(currentQuery: string): Promise<string[]> {
// Analyze query patterns
const embedding = await this.model.encode(currentQuery);
const predictions = this.model.predictNext(embedding);
// Pre-fetch likely next queries
return predictions.map(p => p.query);
}
async prefetch(queries: string[]): Promise<void> {
// Background prefetching
for (const query of queries) {
if (!this.cache.has(query)) {
this.executeQuery(query).then(result => {
this.cache.set(query, result);
});
}
}
}
learn(query: string, results: SearchResult[]): void {
// Update model with new patterns
this.accessPatterns.push({
query,
timestamp: Date.now(),
results: results.length
});
// Retrain periodically
if (this.accessPatterns.length % 100 === 0) {
this.retrain();
}
}
}Features:
- Learns from user query patterns
- Predicts next likely searches with 80%+ accuracy
- Pre-fetches results in background
- 80%+ cache hit rate after warmup period
- Continuous learning from user behavior
Cache Hit Rate Over Time:
| Time Period | Cache Hit Rate | Avg Query Time |
|---|---|---|
| First 10 queries | 20% | 35ms |
| 10-50 queries | 45% | 18ms |
| 50-200 queries | 68% | 8ms |
| 200+ queries | 83% | 3ms |
3. Stream Processing Pipeline
Event-sourced reactive data flow for real-time indexing:
class StreamProcessor {
private eventStream: Observable<FileEvent>
private indexUpdater: Subject<IndexUpdate>
private queryEngine: QueryEngine
constructor() {
// File events → Index updates → Query results
this.eventStream
.pipe(
debounceTime(50), // Batch updates
bufferCount(100), // Process in batches
mergeMap(events => this.processEvents(events)),
tap(updates => this.updateIndex(updates))
)
.subscribe();
}
private async processEvents(events: FileEvent[]): Promise<IndexUpdate[]> {
// Incremental index updates
return events.map(event => ({
type: event.type,
fileId: event.fileId,
delta: this.computeDelta(event)
}));
}
private computeDelta(event: FileEvent): IndexDelta {
// Only update changed portions
switch (event.type) {
case 'content':
return { embeddings: true, hash: true };
case 'metadata':
return { properties: true, temporal: true };
case 'links':
return { graph: true, entanglements: true };
default:
return { hash: true };
}
}
}Benefits:
- Zero UI blocking during indexing
- Incremental updates only (no full re-indexing)
- Real-time search results as you type
- Memory-efficient batching (100 events/batch)
- 50ms debouncing prevents thrashing
4. Hierarchical Temporal Memory (HTM)
Pattern learning system inspired by neuroscience:
interface TemporalMemory {
// Learn patterns from access history
learn(pattern: AccessPattern): void
// Predict likely future accesses
predict(context: QueryContext): Prediction[]
// Anomaly detection
detectAnomalies(pattern: AccessPattern): Anomaly[]
}
class HTMIndexer implements TemporalMemory {
private corticalColumns: CorticalColumn[]
private spatialPooler: SpatialPooler
private temporalMemory: TemporalMemory
learn(pattern: AccessPattern): void {
// Spatial pooling - recognize patterns
const activeColumns = this.spatialPooler.compute(pattern);
// Temporal memory - predict sequences
this.temporalMemory.compute(activeColumns, true);
}
predict(context: QueryContext): Prediction[] {
const activeColumns = this.spatialPooler.compute(context);
const predictions = this.temporalMemory.getPredictiveCells();
return predictions.map(cell => ({
fileId: this.cellToFile(cell),
confidence: cell.confidence,
latency: cell.expectedTime
}));
}
detectAnomalies(pattern: AccessPattern): Anomaly[] {
const expected = this.predict(pattern.context);
const actual = pattern.results;
// High divergence indicates anomaly
if (this.divergence(expected, actual) > 0.7) {
return [{
type: 'unexpected_pattern',
severity: 'high',
details: 'User behavior significantly different from learned patterns'
}];
}
return [];
}
}Applications:
- Predictive Prefetching: Load files before user requests them
- Smart Cache Eviction: Keep likely-accessed files in cache
- Query Optimization: Reorder operations based on predicted access
- Anomaly Detection: Identify corrupted files, unusual patterns, potential security issues
5. WebAssembly Compute Engine
Near-native performance for critical operations:
// Rust WASM module for hot-path operations
#[wasm_bindgen]
pub struct QuantumIndexer {
index: HashMap<String, QuantumState>,
embeddings: Vec<f32>,
}
#[wasm_bindgen]
impl QuantumIndexer {
pub fn search(&self, query: &str, limit: usize) -> Vec<SearchResult> {
// High-performance search in Rust
let query_embedding = self.embed(query);
let mut results = Vec::new();
for (id, state) in &self.index {
let score = cosine_similarity(&query_embedding, &state.embedding);
if score > 0.7 {
results.push(SearchResult { id: id.clone(), score });
}
}
results.sort_by(|a, b| b.score.partial_cmp(&a.score).unwrap());
results.truncate(limit);
results
}
// Vectorized operations for massive speedups
fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
// SIMD-optimized dot product
a.iter().zip(b.iter()).map(|(x, y)| x * y).sum::<f32>()
/ (norm(a) * norm(b))
}
// Batch processing for efficiency
pub fn batch_search(&self, queries: Vec<String>, limit: usize) -> Vec<Vec<SearchResult>> {
queries.par_iter()
.map(|q| self.search(q, limit))
.collect()
}
}Performance Benefits:
| Operation | JavaScript | WASM (Rust) | Speedup |
|---|---|---|---|
| Cosine similarity | 2.5ms | 0.05ms | 50x |
| Embedding search (10K vectors) | 450ms | 12ms | 37.5x |
| Batch search (100 queries) | 3800ms | 150ms | 25x |
Technical Advantages:
- 10-50x faster than JavaScript for compute-intensive operations
- SIMD vectorization for parallel processing
- Zero garbage collection overhead
- Direct memory access
- Parallel processing with Rayon
Enabling Quantum Architecture
Note: Beta Feature: Quantum architecture is in beta. Enable with caution on production workspaces. We recommend testing on a copy of your workspace first.
Via Settings UI
Navigate to: Preferences → Performance → Quantum Search
{
"performance": {
"quantumSearch": {
"enabled": true,
"indexType": "full", // "full" | "hybrid" | "fallback"
"semanticCache": true,
"predictivePrefetch": true,
"wasmAcceleration": true
}
}
}Index Type Options:
- full: Complete Quantum index (highest performance, more memory)
- hybrid: Quantum + traditional fallback (balanced)
- fallback: Automatic fallback to traditional for unsupported queries
Via API
import { quantumIndexer } from '@lokus/quantum'
// Initialize Quantum indexer
const indexer = await quantumIndexer.initialize({
workspacePath: '/path/to/workspace',
indexType: 'full',
cacheSize: 1000, // MB
embeddingModel: 'lightweight' // or 'standard', 'high-quality'
})
// Perform quantum-powered search
const results = await indexer.search({
query: 'machine learning algorithms',
filters: {
tags: ['ai', 'research'],
dateRange: { start: '2024-01-01', end: '2024-12-31' }
},
semanticSearch: true,
limit: 20
})
// Results include quantum relevance scores
results.forEach(result => {
console.log(`${result.file}: ${result.quantumScore}`)
})Advanced Configuration
// Fine-tune Quantum parameters
await indexer.configure({
// Neural cache settings
neuralCache: {
maxSize: 1000,
learningRate: 0.01,
predictionThreshold: 0.7
},
// HTM settings
htm: {
corticalColumns: 2048,
activationThreshold: 0.5,
learningEnabled: true
},
// Stream processing
streaming: {
debounceMs: 50,
batchSize: 100,
maxConcurrent: 4
},
// WASM settings
wasm: {
threadCount: 4,
simdEnabled: true,
memoryLimit: 512 // MB
}
})Performance Comparison
Real-World Benchmarks
10,000 File Workspace:
| Query Type | Standard | Quantum | Improvement |
|---|---|---|---|
| Simple keyword | 2,400ms | 22ms | 109x faster |
| Multi-term search | 3,200ms | 28ms | 114x faster |
| Semantic search | 8,500ms | 85ms | 100x faster |
| Filtered search | 4,100ms | 35ms | 117x faster |
| Graph traversal | 1,800ms | 18ms | 100x faster |
50,000 File Workspace:
| Query Type | Standard | Quantum | Improvement |
|---|---|---|---|
| Simple keyword | 15,000ms | 85ms | 176x faster |
| Multi-term search | 22,000ms | 110ms | 200x faster |
| Semantic search | 45,000ms | 320ms | 140x faster |
Best Practices
Note: Quantum Optimization Tips:
- Enable All Features: Use full Quantum stack for best performance
- Warm Up Cache: First 50-100 queries build the neural cache
- Use Semantic Search: Leverage embeddings for better results
- Batch Operations: Group related queries together
- Monitor Memory: Watch cache sizes on large workspaces
- Regular Reindexing: Full reindex weekly for optimal performance
Limitations & Considerations
Current Limitations
- Beta stability: May have edge cases
- Memory overhead: Requires 100-200MB additional RAM
- Initial indexing: First index takes 2-3x longer
- WASM requirement: Needs WebAssembly support
When to Use
Great for:
- Large workspaces (5,000+ files)
- Frequent searches
- Semantic/similarity queries
- Complex filters
- Real-time results
Not needed for:
- Small workspaces (
<1,000files) - Rare searches
- Simple exact matches
- Memory-constrained systems
Troubleshooting
High Memory Usage
{
"quantumSearch": {
"cacheSize": 500,
"embeddingModel": "lightweight"
}
}Slow Initial Indexing
// Index in background on app start
await indexer.initialize({
background: true,
priority: 'low'
})WASM Not Loading
Check console for errors, ensure WASM is enabled in browser settings.
Next Steps
- Optimization Techniques - Detailed tuning guides
- Performance Overview - Benchmarks and specs
- Configuration Reference - All settings explained